Available online at <u>www.ijpab.com</u>

DOI: http://dx.doi.org/10.18782/2582-2845.8004

ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(2), 253-258

Research Article

Yield Parameters and Economics of Foxtail Millet (Setaria italica L.) Cultivation as Influenced by the Agronomic Fortification with Zinc and Iron

Sathisha G. S.^{1*}, Desai B. K.², Latha H. S.³ and Yogesh L. N.⁴

^{1,2,3}Department of Agronomy, College of Agriculture,

University of Agricultural Sciences, Raichur-584104, Karnataka, India ⁴Department of Genetics and Plant Breeding, Agricultural Research Station, Hagari, Ballari, Karnataka, India *Corresponding Author E-mail: sathishsgowda1901@gmail.com

Received: 25.02.2020 | Revised: 27.03.2020 | Accepted: 2.04.2020

ABSTRACT

A field experiment was conducted to study effect of agronomic fortification of zinc and iron on yield parameters and cost of cultivation of foxtail millet at Agricultural Research Station, Hagari, Karnataka in medium black soil during rabi-2017. The experiment was laid out in split plot design having three genotypes in the main plot and seven methods of micronutrients application in sub plot, it was replicated thrice. The results of the study revealed that sub plot the treatment which received RDF + Soil application of ZnSO₄ at 15 kg ha⁻¹ and FeSO₄ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS recorded significantly higher number of ear heads plant⁻¹ (4.21), length of ear head (25.25 cm), weight of ear head (11.16 g), grain weight (10.21 g plant⁻¹) and 1000 grain weight (5.80 g). In interaction, the genotype Sia-2644 with treatment RDF + Soil application of ZnSO₄ at 15 kg ha⁻¹ and FeSO₄ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS recorded significantly higher number of ear heads plant⁻¹ (4.21), length of ear head (25.73 cm), weight of ear head (11.16 g), grain weight (10.21 g plant⁻¹) and 1000 grain weight (5.80 g). In interaction, the genotype Sia-2644 with treatment RDF + Soil application of ZnSO₄ at 15 kg ha⁻¹ and FeSO₄ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS recorded significantly higher number of ear heads plant⁻¹ (4.32), length of ear head (25.73 cm), weight of ear head (11.49 g) and grain weight (10.35 g plant⁻¹). Regarding the cost of cultivation significantly highest B:C ratio (2.73) was obtained in RDF + Seed treatment with 0.5 % ZnSO₄ & FeSO₄ each + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS.

Keywords: Foxtail millet, Fortification, Zinc and iron, Yield parameters, Economics.

INTRODUCTION

Millets are better adapted to dry, infertile soils than most other crops and are therefore often cultivated under extremely harsh conditions for example, high temperatures, low and erratic precipitation, short growing seasons and acidic and infertile soils with poor waterholding capacity. Most millets have strong, deep rooting systems and short life cycles, and can grow rapidly when moisture is available.

Foxtail millet (*Setaria italica* L.) is an annual grass grown for human food. It is the second-most widely planted species of millet and the most important in East Asia.

Cite this article: Sathisha, G.S., Desai, B.K., Latha, H.S., & Yogesh, L.N. (2020). Yield Parameters and Economics of Foxtail Millet (*Setaria italica* L.) Cultivation as Influenced by the Agronomic Fortification with Zinc and Iron, *Ind. J. Pure App. Biosci.* 8(2), 253-258. doi: http://dx.doi.org/10.18782/2582-2845.8004

Sathisha et al.

This is extensively grown in the arid and semiarid regions of Asia and Africa, as well as in some other economically developed countries of the world. In Southeast Asia, foxtail millet is commonly cultivated in its dry, upland regions. Nutritional composition of foxtail millet per 100 g edible portion is proteins (12.3 g), carbohydrates (60.9 g), fat (4.3 g), crude fibre (8.0 g), calcium (31 mg), minerals (3.3g) and thiamine (0.59 mg) (Gopalan et al., 2007). In developing countries, millet cropping systems tend to be extensive, with limited application of improved technologies, except in some of the more commercialized farming regions in India. These crops are usually grown without irrigation or chemical fertilizer, on light, well-drained soils that are poor in organic matter content. When supplementary or full irrigation is available, farmers prefer to cultivate more remunerative crops.

Malnutrition is an alarming problem in the world. People in developing countries are the major victims of this problem. Even though much progress has been made the problem seems to be unresolved. It is believed that the most sustainable solutions for malnutrition lie in agriculture.

Therefore there is a better scope for growing these millets in the developing countries with the adoption of certain improved cultivation practices. Where these millets will provides the nutritional security to the increasing population and also boosts the income of the farmers due to increasing demand for the millets in the urban population. Therefore in the present study we investigated the effect of zinc and iron application methods on the yield parameters and economics of foxtail millet cultivation.

MATERIALS AND METHODS

The experiment was conducted at Agricultural Research Station, Hagari which is situated between 15° 14' N latitude and 77° 07' E longitude with an altitude of 414 meters above

the mean sea level and is located in Zone-3 of Karnataka. The experiment was laid out in split plot design and comprised of two factors for study viz., Main plot treatments: Genotypes (G) comprised viz., G1: HN-7 (Low in Fe and Zn), G₂: HN-46 (Medium in Fe and high in Zn), G₃: Sia-2644 (High in Fe and medium in Subplot treatments: Micronutrients Zn). application (M) comprised viz., M₁: RDF (control), M₂: RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each, M₃: RDF + Soil application of $ZnSO_4$ @ 15 kg ha⁻¹ and FeSO₄ @ 10 kg ha⁻¹, M₄: RDF + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS, M_5 : RDF + Seed treatment with 0.5% ZnSO₄ & $FeSO_4$ each + Soil application of $ZnSO_4$ @ 15 kg ha⁻¹ and FeSO₄ @ 10 kg ha⁻¹, M₆: RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS, M₇: RDF + Soil application of $ZnSO_4$ @ 15 kg ha⁻¹ and FeSO₄ @ 10 kg ha⁻¹ + Foliar application of 0.5%ZnSO₄ and FeSO₄ each at 30 DAS. The gross plot size was $3.0 \text{ m} \times 3.0 \text{ m}$ and net plot size was $1.8 \text{ m} \times 2.6 \text{ m}$. The spacing given was 30 $cm \times 10$ cm. The soil of the experimental site belongs to medium deep black soil and clay texture, neutral in soil reaction (7.50) and low in electrical conductivity (0.25 dS m^{-1}). The organic carbon content was 0.72 per cent and low in available N (262.00 kg ha⁻¹), medium in available phosphorus (39.25 kg P_2O_5 ha⁻¹) and medium in available potassium (307.00 kg K_2O ha⁻¹), DTPA extractable zinc (0.67 ppm) and DTPA extractable iron (3.92 ppm). The observations related to the yield parameters are recorded the time of harvest.

RESULTS AND DISCUSSION

Yield parameters of foxtail millet as influenced by the agronomic fortification The treatment, RDF + Soil application of ZnSO₄ at 15 kg ha⁻¹ and FeSO₄ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS recorded significantly higher number of ear heads plant⁻¹ (4.21), length of ear head (25.25 cm), weight of ear head (11.16 g), grain weight $(10.21 \text{ g plant}^{-1})$ and 1000weight (5.80 g) among grain the micronutrients application and it was at par with the treatment RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS (Table 1 and 2). In these two treatments the micronutrients are applied through the foliar application along with the seed treatment and soil application. Hence the application of micronutrients in combination at different intervals through seed treatment, soil application and foliar application gives a better absorption of micronutrients than sole application. Similar results recorded by Mosanna and Ebrahim (2015) and Arunkumar et al. (2017).

In interaction effect significantly higher number of ear heads $plant^{-1}$ (4.32), length of ear head (25.73 cm), weight of ear head (11.49 g) and grain weight (10.35 g plant ¹) was found in Sia-2644 with RDF + Soil application of ZnSO₄ @ 15 kg ha⁻¹ & FeSO₄ @ 10 kg ha⁻¹ + Foliar application of 0.5%ZnSO₄ and FeSO₄ each at 30 DAS but it was on par with HN-46 with RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS, HN-7 with RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS, HN-7 with RDF + Soil application of $ZnSO_4 @ 15 kg ha^{-1} \& FeSO_4 @ 10 kg ha^{-1} +$ Foliar application of 0.5% ZnSO₄ and FeSO₄ each 30 DAS and HN-46 with RDF + Soil application of ZnSO₄ @ 15 kg ha⁻¹ & FeSO₄ @ 10 kg ha⁻¹ + Foliar application of 0.5%ZnSO₄ and FeSO₄ each 30 DAS (Table 1 and 2). The increase in the yield attributes could be due to continuous supply of micronutrients (Zn and Fe) to the crop at different intervals through the soil application, seed treatment, foliar application and their combinations. Zn and Fe are part of the photosynthesis,

assimilation and translocation of photosynthates from source (leaves) to sink (ear head) (Singh et al., 1995). The results are in conformity with the findings of Adsul et al. (2011), Dhaliwal et al. (2012), Debroy et al. (2013), Olusengun et al. (2014) and Mosanna and Ebrahim (2015).

Economics of foxtail millet production as influenced agronomic fortification

micronutrient Among the applications significantly higher B:C ratio (2.73) recorded in the treatment RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5% $ZnSO_4$ and $FeSO_4$ each at 30 DAS and lower B:C ratio (2.30) have been noticed in Control. The interaction of HN-46 with RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5%ZnSO₄ and FeSO₄ each at 30 DAS recorded highest B:C ratio (2.81) and it was on par with HN-7 with RDF + Seed treatment with 0.5% $ZnSO_4 \& FeSO_4 each + Foliar application of$ 0.5% ZnSO₄ and FeSO₄ each at 30 DAS (2.79) (Table 3). Combined application of zinc and iron through seed treatment and foliar application gives better growth and yield the parameters due to application of micronutrients at different growth stages different methods through over sole application. Even though higher grain and stover yield (Table 4.) recorded in the RDF + Soil application of $ZnSO_4$ at 15 kg ha⁻¹ and $FeSO_4$ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each 30 DAS. But higher B:C ratio recorded in RDF + Seed treatment with 0.5 % ZnSO₄ & FeSO₄ each + Foliar application of 0.5 % ZnSO₄ and FeSO₄ each at 30 DAS due to comparatively least cost of cultivation and at par grain and stover yield with RDF + Soil application of ZnSO₄ at 15 kg ha⁻¹ and FeSO₄ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each 30 DAS. Similar findings were noticed by Yadav et al. (2011), Durgude et al. (2013) and Meena et al. (2013).

Sathisha et al.	Ind. J. Pure App. Biosci. (2020) 8(2), 253-258	ISSN: 2582 – 2845								
Table 1: Number of ear	heads plant ⁻¹ , length of ear head (cm) and weight of ear h	ead (g) of foxtail millet								
as influenced by genotypes and agronomic fortification										

	Nu	mber of ea	r heads pla	nt ⁻¹	I	ength of ea	ar head (cn	ı)	Weight of ear head (g)				
	G1	G ₂	G ₃	Mean	G1	G ₂	G ₃	Mean	G1	G ₂	G ₃	Mean	
M ₁	2.47	2.37	2.45	2.43	17.03	17.48	17.81	17.44	7.02	7.10	7.13	7.08	
M ₂	2.70	2.68	2.83	2.74	18.22	18.42	18.12	18.25	7.40	7.42	7.24	7.35	
M ₃	3.13	3.03	3.40	3.19	18.92	19.03	20.83	19.59	7.58	7.71	8.88	8.05	
M_4	3.15	3.12	3.87	3.38	20.25	19.95	21.90	20.70	8.16	8.66	9.05	8.62	
M ₅	3.81	3.92	3.20	3.64	23.83	24.06	21.88	23.26	9.78	9.92	9.04	9.58	
M ₆	4.22	4.26	3.71	4.06	25.32	25.46	23.57	24.78	11.29	11.43	10.48	11.06	
M ₇	4.18	4.15	4.32	4.21	25.06	24.94	25.73	25.25	11.09	10.89	11.49	11.16	
Mean	3.38	3.36	3.40	3.38	21.23	21.34	21.41	21.32	8.90	9.02	9.04	8.99	
	S.Em±		C D (P=0.05)		S.Em±		C D (P=0.05)		S.Em±		C D (P=0.05)		
Main plot	0.06		0.	25	0.22		NS		0.06		NS		
Sub plot	0.0	07	0.21		0.19		0.55		0.16		0.44		
Interaction	0.	13	0.	35	0.	33	0.	93	0.27		0.	75	

M1: RDF (control)

Main plot : Genotypes (G)

G₁: HN-7 (low in Fe and Zn)

G2: HN-46 (medium in Fe and high in Zn)

G₃: Sia-2644 (high in Fe and medium in Zn)

Sub plot : Micro nutrients application (M)

 M_2 : RDF + Seed treatment with 0.5 % ZnSO₄ & FeSO₄ each

 $\textbf{M}_{3}\!\!:RDF$ + Soil application of $ZnSO_{4}$ @ 15 kg ha $^{\!\!\!\!^{-1}}$ and FeSO_4 @ 10 kg ha $^{\!\!\!^{-1}}$

 $M_4\!\!:RDF$ + Foliar application of 0.5 % $ZnSO_4\,$ and $FeSO_4\,$ each at 30 DAS

 $\textbf{M_5: RDF} \ + \ Seed \ treatment \ + \ Soil \ application \ (M_2 + M_3)$

 $\textbf{M_6: RDF} \ + \ Seed \ treatment + Foliar \ application \ (M_2 + M_4)$

 $\textbf{M_{7}: RDF} \ + \ Soil \ application \ + \ Foliar \ application \ (M_3 + M_4)$

RDF : 30:15:15 kg N, P_2O_5 and $K_2O \text{ ha}^{-1} + \text{FYM} @ 2.5 \text{ tha}^{-1}$

Table 2: Grain weight (g plant⁻¹) and 1000 grain weight of foxtail millet as influenced by genotypes and agronomic fortification

		Grain weig	1000 grain weight (g)						
	G1 G2		G ₃ Mean		G1	G ₂	G3	Mean	
M ₁	5.06	5.12	5.46	5.21	4.45	4.58	4.65	4.56	
M ₂	6.67	6.52	6.41	6.53	4.69	4.77	4.85	4.77	
M ₃	7.64	7.86	8.36	7.95	5.05	4.84	4.90	4.93	
M4	8.22	8.18	8.60	8.33	5.55	5.25	5.36	5.39	
M5	9.06	9.09	8.35	8.83	5.62	5.65	5.55	5.60	
M ₆	10.21	10.24	9.65	10.03	5.76	5.80	5.70	5.75	
M ₇	10.18	10.09	10.35	10.21	5.75	5.79	5.87	5.80	
Mean	8.15	8.16	8.17	8.16	5.27	5.24	5.27	5.26	
	S.Em±		C D (I	P=0.05)	S.I	Em±	C D (P=0.05)		
Main plot	0.05		NS		0	.03	NS		
Sub plot	0.06		0.19		0	.06	0.18		
Interaction	0.	11	0.31		0	.11	NS		

Main plot : Genotypes (G)

G₁: HN-7 (low in Fe and Zn)

G₂: HN-46 (medium in Fe and high in Zn)

G₃: Sia-2644 (high in Fe and medium in Zn)

Sub plot : Micro nutrients application (M)

M1: RDF (control)

 $M_2: RDF$ + Seed treatment with 0.5 % $ZnSO_4$ & $FeSO_4$ each

 M_3 : RDF + Soil application of ZnSO₄ @ 15 kg ha⁻¹ and FeSO₄ @ 10 kg ha⁻¹

 $M_4: RDF\,$ + Foliar application of 0.5 % $ZnSO_4\,$ and $FeSO_4\,$ each at 30 DAS $\,$

 $\textbf{M_5: RDF} \ + \ Seed \ treatment + Soil \ application \ (M_2 + M_3)$

 $\textbf{M_6: RDF} \ + \ Seed \ treatment + Foliar \ application \ (M_2 + M_4)$

 $\textbf{M_{7}: RDF} \ + \ Soil \ application \ + \ Foliar \ application \ (M_3 + M_4)$

RDF : 30:15:15 kg N, P_2O_5 and K_2O ha⁻¹ + FYM @ 2.5 t ha⁻¹

Sathisha et al.Ind. J. Pure App. Biosci. (2020) 8(2), 253-258ISSN: 2582 - 2845Table 3: Economics of foxtail millet production as influenced by different genotypes and agronomic

	Cost of cultivation (Rs ha ⁻¹)					Gross Returns (Rs ha ⁻¹)				Net Returns (Rs ha ⁻¹)				B:C			
	G1	G ₂	G3	Mean	G1	G ₂	G3	Mean	G1	G ₂	G3	Mean	G1	G ₂	G3	Mean	
M_1	14827	14827	14827	14827	33477	33512	35197	34062	18650	18685	20370	19235	2.26	2.26	2.37	2.30	
M_2	14837	14837	14837	14837	35321	35838	36085	35748	20484	21001	21248	20911	2.38	2.42	2.43	2.41	
M ₃	16327	16327	16327	16327	35817	36476	39396	37230	19490	20149	23069	20903	2.19	2.23	2.41	2.28	
M_4	14847	14847	14847	14847	36903	36725	39464	37697	22056	21878	24617	22850	2.49	2.47	2.66	2.54	
M 5	16327	16327	16327	16327	39148	39403	38006	38852	22821	23076	21679	22525	2.40	2.41	2.33	2.38	
M ₆	14857	14857	14857	14857	41390	41746	38636	40591	26533	26889	23779	25734	2.79	2.81	2.60	2.73	
M ₇	16347	16347	16347	16347	40980	40747	41897	41208	24633	24400	25550	24861	2.51	2.49	2.56	2.52	
Mean	15781	15871	15871	-	37576	37778	38383	37912	22095	22296	22901	22431	2.43	2.44	2.48	2.45	
	S.Em± C D (P=0.05)		S.Em± C		CD(P	C D (P=0.05)		S.Em±		C D (P=0.05)		S.Em±		C D (P=0.05)			
Main plot			228		NS		228		NS		0.01		NS				
Sub plot		-		-	445		1275		445		1275		0.03		0.08		
Interaction		-		-	7	70	21	2153		70	2153		0.05		0.14		

Main plot : Genotypes (G)

G₁: HN-7 (low in Fe and Zn)

G₂: HN-46 (medium in Fe and high in Zn)

G₃: Sia-2644 (high in Fe and medium in Zn)

Sub plot : Micro nutrients application (M)

M₁: RDF (control)

 M_2 : RDF + Seed treatment with 0.5 % ZnSO₄ & FeSO₄ each

 $\textbf{M}_3\!\!:RDF\,$ + Soil application of $ZnSO_4$ @ 15 kg ha $^{\!\!-\!\!1}$ and $FeSO_4$ @ 10 kg ha $^{\!\!-\!\!1}$

 $M_4\!\!:RDF$ + Foliar application of 0.5 % $ZnSO_4\,$ and $FeSO_4\,$ each at 30 DAS $\,$

 M_5 : RDF + Seed treatment + Soil application ($M_2 + M_3$)

 $\textbf{M_6: RDF} \ + \ Seed \ treatment + Foliar \ application \ (M_2 + M_4)$

 $\textbf{M_{7}: RDF} \ + \ Soil \ application \ + \ Foliar \ application \ (M_3 + M_4)$

RDF : 30:15:15 kg N, P_2O_5 and K_2O ha⁻¹ + FYM @ 2.5 t ha⁻¹

Table 4: Grain yield (kg ha⁻¹), stover yield (kg ha⁻¹) and harvest index (%) of foxtail millet as influenced by genotypes and agronomic fortification

	(Grain yield	(kg ha ⁻¹)			Stover yie	ld (kg ha ⁻¹)			Harvest i	ndex (%)	
	G1	G ₂	G3	Mean	G 1	G ₂	G3	Mean	G ₁	G ₂	G3	Mean
\mathbf{M}_{1}	1732	1724	1846	1767	8464	8549	8699	8571	16.97	16.79	17.49	17.08
M ₂	1835	1872	1896	1868	8867	8916	8886	8890	17.13	17.35	17.57	17.35
M ₃	1874	1935	2148	1986	8883	8837	9083	8934	17.41	17.96	19.12	18.16
M4	1953	1944	2150	2015	8980	8934	9109	9008	17.86	17.87	19.09	18.27
M ₅	2117	2134	2035	2095	9165	9196	9057	9139	18.76	18.83	18.34	18.64
M ₆	2285	2309	2076	2223	9313	9358	9149	9274	19.69	19.78	18.49	19.32
M ₇	2256	2239	2321	2272	9274	9255	9363	9298	19.56	19.47	19.85	19.63
Mean	2007	2022	2067	2032	8993	9006	9049	9016	18.20	18.29	18.56	18.35
	S.Em±		C D (P=0.05)		S.Em±		C D (P=0.05)		S.Em±		C D (P=0.05)	
Main plot	18		NS		28		NS		0.12		NS	
Sub plot	3	8	108		26		76		0.29		0.84	
Interaction	6	5	18	82	4	.6	12	28	0.50		NS	

Main plot : Genotypes (G) G₁: HN-7 (low in Fe and Zn)

G₂: HN-46 (medium in Fe and high in Zn)

G₃: Sia-2644 (high in Fe and medium in Zn)

Sub plot : Micro nutrients application (M) M₁: RDF (control)

 \mathbf{W}_1 : KDF (control)

 M_2 : RDF + Seed treatment with 0.5 % ZnSO₄ & FeSO₄ each

 $\textbf{M}_{3}\!\!:RDF\,$ + Soil application of $ZnSO_{4}$ @ 15 kg ha^{\text{-1}} and $FeSO_{4}$ @ 10 kg ha^{\text{-1}}

 $M_4: RDF \ + \ Foliar \ application \ of \ 0.5 \ \% \ ZnSO_4 \ and \ FeSO_4 \ each \ at \ 30 \ DAS$

 M_5 : RDF + Seed treatment + Soil application ($M_2 + M_3$)

RDF : 30:15:15 kg N, P_2O_5 and K_2O ha⁻¹ + FYM @ 2.5 t ha⁻¹

Sathisha et al.

CONCLUSION

Millets are considered as the underutilised crops, they are restricted to the poor fertile and marginal soils, where most of the nutrients are deficient. Among the micronutrients Zinc and Iron are most deficient in Indian soil. Hence, application of these micronutrients along with the RDF will increases the yield and in turn assures better monetary returns. The treatment, $RDF + Soil application of ZnSO_4 at 15 kg ha⁻¹$ and FeSO₄ at 10 kg ha⁻¹ + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS gives better yield attributes, whereas higher B:C ratio recorded in the treatment RDF + Seed treatment with 0.5% ZnSO₄ & FeSO₄ each + Foliar application of 0.5% ZnSO₄ and FeSO₄ each at 30 DAS.

REFERENCES

- Adsul, P.B., Anuradha, P., Ganesh, G., Ajeet,
 P., & Shiekh, S.S. (2011). Uptake of
 N, P, K. and yield of *kharif* sorghum
 as influence by soil and foliar
 application of micronutrients. *Bioinfolet*, 11(2), 578-582.
- Arunkumar, B.R., Srinivasa, N. Prakash, S.S., Krishna Murthy, R., & Yogananda, S.
 B. (2017). Soil chemical properties and micronutrient (Zn & B) content in maize crop at different stage as influenced by gypsum and borax application under different nutrient management practices. *Journal of Pharmacognosy and Phytochemistry*. 6(5), 1689-1694.
- Debroy, P., Narwal, R.P., Malik, R.S., & Narender, (2013). Impact of zinc application methods on greengram (*Vigna radiate* L.) productivity and grain zinc fortification. *Journal of Environmental Biology* 35, 851-854.

- Dhaliwal, S.S., Sadana, U.S., Khurana, M.P.S., & Sidhu, S.S. (2012). Enrichment of wheat grains with Zn through fertifortification. *Indian Journal of Fertilisers*, 8(7), 48-55.
- Durgude, A.G., Kadam, S.R., & Pharande, A.L. (2013). Response of hybrid maize to soil and foliar application of iron and zinc on Entisols. *Asian Journal of Soil Science*, 9(1), 36-40.
- Gopalan, C., Ramasashtri, B.V., & Balasubramanian, S.C. (2007). Nutritive Value of Indian Foods. National Institute of Nutrition, ICMR: Hyderabad, India, p. 47.
- Meena, S.K., Mundra, S.L., & Singh, P. (2013). Response of maize (*Zea mays* L.) to nitrogen and zinc fertilization. *Indian Journal of Agronomy*, 58(1), 127-128.
- Mosanna, R., & Ebrahim, K. B. (2015). Morpho- physiological response of maize (*Zea mays* L.) to zinc nanochelate foliar and soil application at different growth stages. *Journal of New Biology Reports* 4(1), 46-50.
- Olusengun, A., & Meki, C. (2014). Soil application of zinc to maize and wheat grown on a zambian Alfisol. *African Journal of Agricultural Research*, 9(11), 963-970.
- Singh, D., & Singh, R.N. (1995). Effect of potassium, zinc and sulphur on growth characters, yields attributes and yield of soybean (*Glycine max L.*). *Indian Journal of Agronomy*, 40(2), 223-227.
- Yadav, R.S., Patel, A.M., Dodia, I.N., & Aglodiya, A.V. (2011). Agronomic biofortification of wheat through iron and zinc enrichment organics. *Journal* of Wheat Research, 3, 46-51.